3.774 \(\int \frac{(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^2} \, dx\)

Optimal. Leaf size=160 \[ -\frac{c^{3/2} (7 B+i A) \tanh ^{-1}\left (\frac{\sqrt{c-i c \tan (e+f x)}}{\sqrt{2} \sqrt{c}}\right )}{8 \sqrt{2} a^2 f}+\frac{c (7 B+i A) \sqrt{c-i c \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}+\frac{(-B+i A) (c-i c \tan (e+f x))^{3/2}}{4 a^2 f (1+i \tan (e+f x))^2} \]

[Out]

-((I*A + 7*B)*c^(3/2)*ArcTanh[Sqrt[c - I*c*Tan[e + f*x]]/(Sqrt[2]*Sqrt[c])])/(8*Sqrt[2]*a^2*f) + ((I*A + 7*B)*
c*Sqrt[c - I*c*Tan[e + f*x]])/(8*a^2*f*(1 + I*Tan[e + f*x])) + ((I*A - B)*(c - I*c*Tan[e + f*x])^(3/2))/(4*a^2
*f*(1 + I*Tan[e + f*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.226024, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 43, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.116, Rules used = {3588, 78, 47, 63, 208} \[ -\frac{c^{3/2} (7 B+i A) \tanh ^{-1}\left (\frac{\sqrt{c-i c \tan (e+f x)}}{\sqrt{2} \sqrt{c}}\right )}{8 \sqrt{2} a^2 f}+\frac{c (7 B+i A) \sqrt{c-i c \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}+\frac{(-B+i A) (c-i c \tan (e+f x))^{3/2}}{4 a^2 f (1+i \tan (e+f x))^2} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(3/2))/(a + I*a*Tan[e + f*x])^2,x]

[Out]

-((I*A + 7*B)*c^(3/2)*ArcTanh[Sqrt[c - I*c*Tan[e + f*x]]/(Sqrt[2]*Sqrt[c])])/(8*Sqrt[2]*a^2*f) + ((I*A + 7*B)*
c*Sqrt[c - I*c*Tan[e + f*x]])/(8*a^2*f*(1 + I*Tan[e + f*x])) + ((I*A - B)*(c - I*c*Tan[e + f*x])^(3/2))/(4*a^2
*f*(1 + I*Tan[e + f*x])^2)

Rule 3588

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x
], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^2} \, dx &=\frac{(a c) \operatorname{Subst}\left (\int \frac{(A+B x) \sqrt{c-i c x}}{(a+i a x)^3} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{(i A-B) (c-i c \tan (e+f x))^{3/2}}{4 a^2 f (1+i \tan (e+f x))^2}+\frac{((A-7 i B) c) \operatorname{Subst}\left (\int \frac{\sqrt{c-i c x}}{(a+i a x)^2} \, dx,x,\tan (e+f x)\right )}{8 f}\\ &=\frac{(i A+7 B) c \sqrt{c-i c \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}+\frac{(i A-B) (c-i c \tan (e+f x))^{3/2}}{4 a^2 f (1+i \tan (e+f x))^2}-\frac{\left ((A-7 i B) c^2\right ) \operatorname{Subst}\left (\int \frac{1}{(a+i a x) \sqrt{c-i c x}} \, dx,x,\tan (e+f x)\right )}{16 a f}\\ &=\frac{(i A+7 B) c \sqrt{c-i c \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}+\frac{(i A-B) (c-i c \tan (e+f x))^{3/2}}{4 a^2 f (1+i \tan (e+f x))^2}-\frac{((i A+7 B) c) \operatorname{Subst}\left (\int \frac{1}{2 a-\frac{a x^2}{c}} \, dx,x,\sqrt{c-i c \tan (e+f x)}\right )}{8 a f}\\ &=-\frac{(i A+7 B) c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c-i c \tan (e+f x)}}{\sqrt{2} \sqrt{c}}\right )}{8 \sqrt{2} a^2 f}+\frac{(i A+7 B) c \sqrt{c-i c \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}+\frac{(i A-B) (c-i c \tan (e+f x))^{3/2}}{4 a^2 f (1+i \tan (e+f x))^2}\\ \end{align*}

Mathematica [A]  time = 3.86559, size = 205, normalized size = 1.28 \[ \frac{\sec (e+f x) (\cos (f x)+i \sin (f x))^2 (A+B \tan (e+f x)) \left (\sqrt{2} c^{3/2} (A-7 i B) (\sin (2 e)-i \cos (2 e)) \tanh ^{-1}\left (\frac{\sqrt{c-i c \tan (e+f x)}}{\sqrt{2} \sqrt{c}}\right )+2 c \cos (e+f x) (\cos (2 f x)-i \sin (2 f x)) \sqrt{c-i c \tan (e+f x)} ((A+9 i B) \sin (e+f x)+(5 B+3 i A) \cos (e+f x))\right )}{16 f (a+i a \tan (e+f x))^2 (A \cos (e+f x)+B \sin (e+f x))} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(3/2))/(a + I*a*Tan[e + f*x])^2,x]

[Out]

(Sec[e + f*x]*(Cos[f*x] + I*Sin[f*x])^2*(A + B*Tan[e + f*x])*(Sqrt[2]*(A - (7*I)*B)*c^(3/2)*ArcTanh[Sqrt[c - I
*c*Tan[e + f*x]]/(Sqrt[2]*Sqrt[c])]*((-I)*Cos[2*e] + Sin[2*e]) + 2*c*Cos[e + f*x]*(Cos[2*f*x] - I*Sin[2*f*x])*
(((3*I)*A + 5*B)*Cos[e + f*x] + (A + (9*I)*B)*Sin[e + f*x])*Sqrt[c - I*c*Tan[e + f*x]]))/(16*f*(A*Cos[e + f*x]
 + B*Sin[e + f*x])*(a + I*a*Tan[e + f*x])^2)

________________________________________________________________________________________

Maple [A]  time = 0.099, size = 117, normalized size = 0.7 \begin{align*}{\frac{-2\,i{c}^{2}}{f{a}^{2}} \left ({\frac{1}{ \left ( -c-ic\tan \left ( fx+e \right ) \right ) ^{2}} \left ( \left ( -{\frac{9\,i}{16}}B-{\frac{A}{16}} \right ) \left ( c-ic\tan \left ( fx+e \right ) \right ) ^{{\frac{3}{2}}}+ \left ({\frac{7\,i}{8}}Bc-{\frac{Ac}{8}} \right ) \sqrt{c-ic\tan \left ( fx+e \right ) } \right ) }+{\frac{ \left ( -7\,iB+A \right ) \sqrt{2}}{32}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{c-ic\tan \left ( fx+e \right ) }{\frac{1}{\sqrt{c}}}} \right ){\frac{1}{\sqrt{c}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^2,x)

[Out]

-2*I/f/a^2*c^2*(((-9/16*I*B-1/16*A)*(c-I*c*tan(f*x+e))^(3/2)+(7/8*I*B*c-1/8*A*c)*(c-I*c*tan(f*x+e))^(1/2))/(-c
-I*c*tan(f*x+e))^2+1/32*(-7*I*B+A)*2^(1/2)/c^(1/2)*arctanh(1/2*(c-I*c*tan(f*x+e))^(1/2)*2^(1/2)/c^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.44929, size = 973, normalized size = 6.08 \begin{align*} \frac{{\left (\sqrt{\frac{1}{2}} a^{2} f \sqrt{-\frac{{\left (A^{2} - 14 i \, A B - 49 \, B^{2}\right )} c^{3}}{a^{4} f^{2}}} e^{\left (4 i \, f x + 4 i \, e\right )} \log \left (\frac{{\left ({\left (-i \, A - 7 \, B\right )} c^{2} + \sqrt{2} \sqrt{\frac{1}{2}}{\left (a^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2} f\right )} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{-\frac{{\left (A^{2} - 14 i \, A B - 49 \, B^{2}\right )} c^{3}}{a^{4} f^{2}}}\right )} e^{\left (-i \, f x - i \, e\right )}}{4 \, a^{2} f}\right ) - \sqrt{\frac{1}{2}} a^{2} f \sqrt{-\frac{{\left (A^{2} - 14 i \, A B - 49 \, B^{2}\right )} c^{3}}{a^{4} f^{2}}} e^{\left (4 i \, f x + 4 i \, e\right )} \log \left (\frac{{\left ({\left (-i \, A - 7 \, B\right )} c^{2} - \sqrt{2} \sqrt{\frac{1}{2}}{\left (a^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2} f\right )} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{-\frac{{\left (A^{2} - 14 i \, A B - 49 \, B^{2}\right )} c^{3}}{a^{4} f^{2}}}\right )} e^{\left (-i \, f x - i \, e\right )}}{4 \, a^{2} f}\right ) + \sqrt{2}{\left ({\left (i \, A + 7 \, B\right )} c e^{\left (4 i \, f x + 4 i \, e\right )} +{\left (3 i \, A + 5 \, B\right )} c e^{\left (2 i \, f x + 2 i \, e\right )} +{\left (2 i \, A - 2 \, B\right )} c\right )} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-4 i \, f x - 4 i \, e\right )}}{16 \, a^{2} f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^2,x, algorithm="fricas")

[Out]

1/16*(sqrt(1/2)*a^2*f*sqrt(-(A^2 - 14*I*A*B - 49*B^2)*c^3/(a^4*f^2))*e^(4*I*f*x + 4*I*e)*log(1/4*((-I*A - 7*B)
*c^2 + sqrt(2)*sqrt(1/2)*(a^2*f*e^(2*I*f*x + 2*I*e) + a^2*f)*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(-(A^2 - 14
*I*A*B - 49*B^2)*c^3/(a^4*f^2)))*e^(-I*f*x - I*e)/(a^2*f)) - sqrt(1/2)*a^2*f*sqrt(-(A^2 - 14*I*A*B - 49*B^2)*c
^3/(a^4*f^2))*e^(4*I*f*x + 4*I*e)*log(1/4*((-I*A - 7*B)*c^2 - sqrt(2)*sqrt(1/2)*(a^2*f*e^(2*I*f*x + 2*I*e) + a
^2*f)*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(-(A^2 - 14*I*A*B - 49*B^2)*c^3/(a^4*f^2)))*e^(-I*f*x - I*e)/(a^2*
f)) + sqrt(2)*((I*A + 7*B)*c*e^(4*I*f*x + 4*I*e) + (3*I*A + 5*B)*c*e^(2*I*f*x + 2*I*e) + (2*I*A - 2*B)*c)*sqrt
(c/(e^(2*I*f*x + 2*I*e) + 1)))*e^(-4*I*f*x - 4*I*e)/(a^2*f)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))**(3/2)/(a+I*a*tan(f*x+e))**2,x)

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \tan \left (f x + e\right ) + A\right )}{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}{{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^2,x, algorithm="giac")

[Out]

integrate((B*tan(f*x + e) + A)*(-I*c*tan(f*x + e) + c)^(3/2)/(I*a*tan(f*x + e) + a)^2, x)